Worker and consumer exposure issues のセッションから 英文と翻訳

翻訳:藤沢 浩二

Communities Near Toluene Diisocyanate Sources: An Investigation of Exposure and Health

Lynn Wilder, Agency for Toxic Substances and Disease Registry (ATSDR)

Financial disclosure: Nothing to disclose

Toluene diisocyanate (TDI) is a well-known cause of occupational asthma, but we know little about the potential for exposure and health effects among residents who live near facilities that release TDI. In the mid-1990’s, the North Carolina Department of Health and Human Services and the Agency for Toxic Substsnces and Disease Registry investigated exposures to TDI and health outcomes in one community, which left some unanswered questions. This cross-sectional study evaluated the potential associations between living near a TDI source and the prevalence of three variables: asthma or asthma-like respiratory symptoms, antibodies specific to TDI, and verifiable levels of TDI in residential air. Results among North Carolina residents living near such facilities (five target communities) were compared with the results from residents living further

away (five comparison communities). Overall, the prevalence of reporting either asthma or asthma-like respiratory symptoms was higher (odds ratio = 1.60; 95% confidence interval = 0.97–2.54) among residents in target communities than those in comparison communities. However, this difference was not statistically significant. Symptom prevalence varied greatly among

the community populations. The prevalence of respiratory symptoms was higher near facilities with historically higher TDI emissions. Among the 351 participants who provided blood samples, only one had immunoglobulin G specific antibodies toTDI. This participant lived in a target area and may have had non-occupational exposure. TDI was detected at an extremely low level (1 ppt) in one of the 45 air samples from target communities. One ppt is one-tenth the EPA reference concentration.

Overall, air sample and antibody test results are not consistent with recent or ongoing exposure to TDI.

Participant’s blood samples were also analyzed for hexamethylene diisocyanate (HDI) and diphenylmethane diisocyanate (MDI) antibodies. Two of the five target area participants with diisocyanate antibodies (40%) and four of the 12 comparison area participants with isocyanate antibodies (33%) reported non-occupational exposure to diisocyanates. The exposure sources for

these individuals included spray foam, deck sealant, and auto paint. This finding indicates a need to study the relationships between diisocyanates other than TDI and respiratory health in the general population.



トルエンジイソシアネート源近くの地区における曝露と健康調査

( Toxic Substances and Disease Registry(ATSD):環境有害物質・特定疾病対策庁)

トルエンジイソシアネート(TDI)は、職業性喘息の原因であることはよく知られているが、TDIを排出する施設の近くに住む住民への曝露と健康への影響についてはあまり知られていない。
1990年代半ばにノースカロライナ州保健福祉省と環境有害物質・特定疾病対策庁が居住地区におけるTDIの曝露と健康への影響について調査し、いくつかの問題点を指摘した。

横断的研究は TDI 発生源近くの地区住民と3つの変数(①喘息または喘息様呼吸器症状、②TDIに対する特異的な抗体 ③居住地区でのTDIの検出レベルと有病率)との間の潜在的な関係について検討した。
ノースカロライナでのTDI施設近くの居住地区 (5つの対象地区)と施設からは離れた居住地区(5つの比較地区)の結果を比較した。

全体的に、喘息や喘息様呼吸器症状の有病率は比較居住地区に比べ対象居住地区の方が高かった。(95%信頼区間= 0.97から2.54オッズ比= 1.60)。しかし、この差は統計的に有意とは言えない。
有症状率は地区の人口によって大きく変動した。従来から高いTDI 排出施設の近くは、呼吸器症状の有病率が高かった。
血液サンプルを提供した351人の1人だけTDI免疫グロブリンG抗体を持っていた。この参加者は対象地区に住んでおり、非職業性曝露の可能性がある。
TDI は対象居住地区からの45の大気サンプルのうち1つが非常に低いレベル (1 ppt)のTDIが検出された。1 ppt は、EPA基準濃度の1/10。

全体的にみて、大気サンプルと抗体テスト結果は、直近のあるいは継続的TDIな暴露と一致しない。
また参加者の血液サンプルからヘキサメチレンジイソシアネート(HDI)、ジフェニルメタンジイソシアネート(MDI)ジイソシアネート抗体についても分析した。
対象地区の5人に2人(40%)はジイソシアネート抗体を、比較地区参加者12人中4人(33%)はイソシアネート抗体を持ちジイソシアネートの非職業性曝露と報告された。

これらの曝露源は、スプレーフォーム、デッキシーラント、自動塗装が含まれている。
この調査結果はTDI 以外のジイソシアネートと一般集団における呼吸器系の健康状態との関係を調査する必要性を示唆している。

 

A Case Series of Families with Symptoms Associated with Home Polyurethane Spray Foam Insulation

Redlich CA, Wilson L

Corresponding author: Carrie Redlich, Professor of Medicine, Yale University School of Medicine, New Haven, CT, US.

Financial Disclosure: Nothing to disclose

Relevance / Research Purpose: Polyurethane (PU) spray foam insulation is increasingly being used in residential buildings to improve energy efficiency. The 2-part systems, which contain methelyne bisphenyl diisocyanate (MDI), polyols, catalysts, blowing agents, fire retardants, and related chemicals, are mixed and applied in the home.

We report a case series of 4 families who presented with symptoms associated with PU foam application in their homes. Home air sampling and/or foam chamber studies were performed to better understand the specific chemicals present in the homes and potential health effects.

Participants: The study involved patients who were referred to the Yale Occupational and Environmental Medicine Program for evaluation of home-related symptoms.

Methods / Analysis: Clinical evaluation of the subjects and family members included a careful occupational and environmental exposure history, physical examination and spirometry, and review of relevant home exposures and MSDS sheets. Area air samples were obtained from selected rooms in each house, and also from the chamber head space above foam samples obtained from the homes. Air samples were analyzed for total VOCs, aldehydes, amines, MDI, and other airborne contaminants using standard thermal desorption GC/MS and HPLC-UV methods.

Results: Upper airway, mucosal and CNS symptoms and distinct odors were associated with exposure to the foam. No inhabitants developed new onset asthma or sensitization to MDI.

Total VOCs measured 2 to 20 months after application of the PU spray foam were high, above recommended levels. Specific chemicals identified in the air and chamber samples were consistent with the known components of the PU foam, including amine catalysts, siloxanes, blowing agents, fire retardants, aldehydes and polyols, and persisted for up to 20 months after application. Airborne MDI was not detected.

Three of the 4 families were unable to return to their homes.

Conclusions / Implications: Home PU spray foam can off-gas VOCs, amines and related chemicals for months after home application, and can be associated with distinct odors and persistent symptoms in home inhabitants. How long such foam may continue to off-gas remains unclear.

Funding Acknowledgement: The study was funded by the Yale Occupational and Environmental Medicine Program.

ポリウレタン スプレー発泡断熱材に関連する症状を持つ家族の症例

関連/研究目的: ポリウレタン(PU)スプレー発泡断熱材は住宅のエネルギー効率を改善のために使用量は増加している。

メチレンビフェニルジイソシアネート (MDI)、ポリオール、触媒、発泡剤、難燃剤、および関連の化学物質を含む系は、家屋に使われている。

PU フォーム塗布に関連付けられる症状を呈する4家族のケースについて報告する。室内の大気サンプリングや発砲材の部屋の調査は、特定化学物質と潜在的な健康への影響をより理解するために実施した。

参加者:この調査には室内の関連症状評価のためのエール労働環境医学プログラムから付託された患者が参加した。

方法/分析: 調査対象者と家族の臨床評価には職業上または環境からの曝露歴、身体検査と肺活量検査、および室内での曝露とMSDSシート(製品安全シート)の関連性検査が含まれている。

大気サンプルはそれぞれの家で選択した部屋で、また室内に発砲材試料のある応接室の上部からも得た。

大気サンプルは全VOC、アルデヒド、アミン、MDIおよび他の大気中浮遊汚染物質を昇温脱離GC―MASとHPLC-UV法で分析した。

結果: 上気道、粘膜と中枢神経系(CNS)症状、異臭は発砲材の曝露と関連した。

居住者は新たな気管支喘息症状あるいはMDI(憂鬱病)への感作は見られなかった。

PU 泡スプレー塗布後、2から20カ月測定した総揮発性有機化合物は高く、勧告レベル以上であった。
大気と室内の試料中に確認された特定の化学物質はPUフォーム中の組成であるアミン触媒、シロキサン、発泡剤、難燃剤、アルデヒド類、ポリオールと一致し、塗布後20 ヶ月まで残っていた。浮遊MDI は検出されなかった。

4家族の内3家族は家に戻ることができなかった。

結論/影響: 家庭用PU 泡スプレーは塗布後VOCs、アミン、関連する化学物質は数か月で排出でき、居住者における特異な臭と永続的な症状は関連づけることができる。
このような発泡剤がどのくらい排出し続けるかは明確ではない。

資金と謝辞:この研究はYale Occupational and Environmental Medicine Programの資金で行った。


 

Risk Assessment For Consumer Exposure To Toluene Diisocyanate (TDI) Derived

From Polyurethane Flexible Foam

Financial Disclosure: Research team includes scientists employed by producers of isocyanates

Polyurethanes (PU) are polymers made from diisocyanates and polyols for a variety of consumer products. It has been suggested that PU foam may contain trace amounts of residual toluene diisocyanate (TDI) monomers and present a health risk.

To address this concern, the exposure scenario and health risks posed by sleeping on a PU foam mattress were evaluated. Toxicology benchmarks for key non-cancer endpoints (i.e., irritation, sensitization, respiratory tract effects) were determined by dividing points of departure by uncertainty factors. The cancer benchmark was derived using the USEPA Benchmark Dose Software. Results of previous migration and emission data of TDI from PU foam were combined with conservative exposure factors to calculate upper-bound dermal and exposures to TDI as well as a lifetime average daily dose to TDI from dermal exposure. For each non-cancer endpoint, the toxicity benchmark was divided by the calculated exposure to determine the margin of safety (MOS), which ranged from 200 (respiratory tract) to 3 x 106 (irritation).

Although available data indicate TDI is not carcinogenic, a theoretical excess cancer risk (1 × 10-7) was calculated. We conclude from this assessment that sleeping on a PU foam mattress does not pose TDI-related health risks to consumers.

 

軟質ポリウレタンホームからのトルエンジイソシアネート(TDI)の消費者への曝露のリスク評価

種々の消費材のポリウレタン(PU)はジイソシアネートとポリオールから作られるポリマーである。
PUフォームは微量のTDIモノマー残存の可能性があり、健康上リスクがあることが示唆されている。
この問題に対応するため、PU マットレスで寝ることによってもたらされる暴露シナリオと健康リスクを評価した。

非がん性指標のための毒性基準(すなわち、刺激、感作性、気道への影響) は不確定要素からのずれ境界点により決定した。
がん指標は USEPAベンチマーク・ドーズ・ソフトウエアを用い導いた。

PUホームからのTDIの事前の移動と排出データの結果は、皮膚の上限を算出するための保守的な曝露因子と同様に生涯のTDIの毎日平均被曝線量と結びつけた。
それぞれの非がん性エンドポイントに対し、毒性ベンチマークは安全限界(MOS)を決める曝露計算よって区分された。それは200 (上気道)から 3 x 106 (刺激) の範囲であった。

有効なデータはTDI は発癌性がないことを示したが、理論的には過剰な癌リスク (1 × 10-7)が計算された。

PUの泡のマットレスで寝ている消費者にTDI 関連する健康上のリスクをもたらすことないことが研究からから結論できた。

 

Inception Cohort Study of Workers Exposed to Toluene Diisocyanate at a Polyurethane Foam Factory: One Year Follow-up

Gui W, Neamtiu I, Wisnewski A, Liu J, Gurzau E, Redlich CA

Corresponding author: Wei Gui, Medical Student, Yale University School of Medicine, New Haven, CT, US. wei.gui@yale.edu

Financial disclosure: Nothing to disclose

Research Purpose: This unique inception cohort study at a modern polyurethane foam factory in Romania was initiated to characterize workplace exposures to toluene diisocyanate (TDI) and the health consequences.

 Relevance: Isocyanates, used in the production of polyurethane foam, can lead to asthma. Despite improved controls, workers continue to develop asthma. To date, there are few published longitudinal cohort studies of workers exposed to TDI and the consequences for health.

Participants: Eligible participants included consenting workers at a polyurethane foam factory in Romania between 2010 and 2011. The study was approved by the human subjects review board in Romania and at Yale University.

Methods: Newly hired workers were enrolled and assessed through questionnaire, spirometry, and serum analysis at initial employment and serially at 6 month intervals. Interview-based questionnaires were given to assess baseline demographics, exposure to TDI and changes in respiratory and general health. Spirometry was performed to measure FEV1 and FVC.

Workers’ sera were collected and ELISA antibody assays were performed to detect TDI-IgG and TDI-IgE antibodies. Continuous air monitoring for TDI levels at select locations inside the workplace was instituted upon opening of the factory.

Analysis and Results: 49 workers were initially enrolled with mean age of 39 years, 28 smoked (57.1%), 3 had prior isocyanate exposure (6.1%), and none had a prior asthma. At baseline, 3/42 (7.1%) workers had FEV1/FVC < 0.75. 6 months later, 6/37 (16.2%) had FEV1/FVC < 0.75 and 3/37 (8.1%) had FEV1 decrease of > 10%.

Asthma symptoms were present at baseline in 3/49 (6.1%) workers, at 6 months in 3/42 (7.1%), and at 1 year in 1/37 (2.7%). TDI-specific IgG, negative in all workers at baseline, was detected in 1/39 (2.6%) workers (1:40 serum titer) by 6 months but negative in all workers again at 1 year.

Over the first year, 6 workers resigned and 2 refused follow-up. TDI air levels were below 2.5 ppb. Skin exposure was not assessed, but workers frequently touched recently cured foam with their bare hands.

Conclusions and Implications: One year follow-up of this inception cohort showed no documented cases of TDI asthma in any of the first 49 workers hired in this modern TDI foam factory.

However, several findings suggest early TDI-related health effects in these workers. By 6 months, one worker in the laboratory, who also reported rhinitis-type symptoms, had become sensitized to TDI (positive TDI-IgG titers).

However, at 1 year follow-up, the same worker was working in the human resource department, had negative TDI-IgG titers, and reported no rhinitis-type symptoms.

At 1 year follow-up, one worker had developed newonset symptoms of asthma. In addition, 3 workers had a greater than 10% decline in FEV1, 2 workers developed new airflow obstruction, and 8 workers left or refused follow-up for unclear reasons. Additional follow-up should help elucidate the incidence of TDI sensitization and asthma, and risk factors for development of disease.

Funding Acknowledgement: Yale University Occupational and Environmental Medicine and Yale University School of Medicine Office of Student Research.

 

ウレタン工場におけるトルエンジイソシアネートの曝露作業者のコホート調査: 1 年間のフォローアップ

目的:このユニークなコホート調査はルーマニアの近代的なポリウレタン工場における作業所でトルエンジイソシアネート (TDI) 曝露と健康への影響を調べるために開始した。

関連:ポリウレタン製造で使用するイソシアネートは気管支喘息を引き起こす。

管理が改善されたにもかかわらず、作業者は喘息を発症続けている。
今まで、作業者のTDI曝露 と健康への影響についての縦断的コホート調査はわずかである。

参加者:対象となった参加者は、2010年と 2011 年の間ルーマニアのポリウレタン フォーム工場で同意した作業者である。
調査は、ルーマニアで被験者審査委員会によって承認されイェール大学で行った。

方法:登録された新人作業員は雇用の初期と6ヶ月間ごとにアンケート、肺活量測定、および血清分析を行った。
インタビュース形式のアンケートでは、TDI曝露と呼吸系および健康全般の変化についての統計上の基準値を査定した。
肺活量はFEV1 および FVC測定を行った。

作業者の血清を採取し、ELISA 抗体検査はTDI IgG とTDI IgE 抗体を検出するために行った。
TDIのための大気の連続モニタリングは作業所内の選択した場所で、工場を開く際に行われた。

分析と結果:最初に登録された49人の労働者の平均年齢39歳、喫煙者28人(57.1%),3人はイソシアネートの曝露歴を持つ。喘息歴の人はなし。
ベースラインで、3/42(7.1%)の作業者はFEV1/FVC < 0.75、6か月後6/37(16.2%)の作業者は FEV1/FVC < 0.75で、3/37(8.1%)の作業者のFEVI(努力性肺活量1秒)が減少した。
喘息症状はベースラインで3/49(61%)の労働者が、6か月後3/42(7.1%)、1年後1/37(2.7%)確認された。

すべての作業者のTDI特異IgG値はベースラインで陰性であったが、6っか月で1/39(2.6%)の労働者が(1:40 血清力価)を検出した。
しかし、一年後すべての労働者が再び陰性であった。

最初の 1年間に、作業者6人が退職した、2人は、フォロー アップを拒否した。
TDIは大気レベルで 2.5 ppb 以下であった。肌の露出は評価しなかったが、労働者が頻繁に素手で硬化発泡剤に触れていた。

結論と影響:追跡調査の初期では、近代的なTDI 発泡工場で最初に雇われた49人の作業者のいずれもTDI喘息の確認された例はなかった。

ただし、いくつかの調査結果は、これらの労働者の初期の TDI関連の健康への影響が示唆された。

6 ヶ月で、研究室の一人の労働者が鼻炎型の症状を報告し、TDI (ポジティブな TDI IgG 抗体) に敏感になっていた。
ただし、1 年間のフォロー アップで、同じ労働者が人事部で働いたら負の TDI IgG 抗体を持ち、鼻炎型の症状は報告されなかった。

1 年のフォロー アップで1人は、新規の喘息を発症していた。加えて3人の作業者のFEV1は10%以上減少し、2人は新たに気導閉塞になっていた。
8人ははっきりした理由なしに辞め、あるいはフォローアップを拒否した。追加フォロー アップは、TDIに対する 感化と喘息の病気発症の危険因子の解明に役立つ。

謝辞: Yale University Occupational and Environmental Medicine and Yale University School of Medicine Office of Student Research.

 

An Inhalational Study of Gorilla Glue

Michael J. McCoy, Cynthia Boyd, Kim E. Anderson

Corresponding author: JCynthia Boyd, GZA GeoEnvironmental, Inc., 20900 Swenson Dr., Suite 150 Waukesha, WI 53186

Cynthia.Boyd@gza.com

Financial disclosure: Members of research team employed by industry

Research Purpose: Methylene bisphenyl isocyanate (MDI) is one of several isocyanates used in a variety of consumer products. An expandable polyurethane adhesive, Gorilla GlueR (Gorilla Glue), contains a mixture of polymeric and monomeric MDI and is designed as a waterproof adhesive for consumer use.

Objective: The objective of this study was to measure the airborne MDI vapor or aerosol concentrations and related potential exposure when MDI- and polymeric MDI (PMDI)-based Gorilla Glue is manually applied by a consumer.

Methods: A work practice simulation study using Gorilla Glue, while quantitatively evaluating airborne concentrations of MDI during standard and hypothetical maximal worst-case consumer use, was conducted.

Results: Laboratory analysis for monomeric MDI and PMDI (oligomeric) revealed airborne concentrations that were below the limit of analytical detection of 0.0005 milligrams of MDI per cubic meter of air (mg/m3) during standard and worst-case use of Gorilla Glue. Increasing the mass of glue, the time when the entire surface area of the glue was exposed to ambient conditions prior to clamping of the material being glued, and the surface area to which the glue was applied (furring strips and plywood ) did not impact the airborne MDI concentrations.

Funding Acknowledgement: Mr. McCoy, Ms. Boyd, and Dr. Anderson are employed as consulting toxicologists for GZA GeoEnvironmental, Inc. This work was funded by Gorilla Glue, which provided no substantive direction to the authors in the study’s design, execution, data analysis and preparation for publication.

 

ゴリラ接着剤の吸入に関する研究

資金公開: 工場委託の研究チーム

目的:メチルビスイソシアネート(MCI)は様々な消費財に使われているイソシアネート類の一種である。

膨張性ポリウレタン接着剤、Gorilla GluseR(gorilla Glie)はポリマーとモノマーのMDI混合物を含み消費者用の防水用接着剤として設計されている。

目的: この研究の目的は、MDIと高分 MDI PMDI ベースの接着剤を消費者が使用したとき、浮遊 MDI 蒸気またはエアロゾル濃度と潜在被曝の関係を調べることである。

方法: Gorilla接着剤を使用時における作業の実践的シミュレーションは消費者が使用する標準的な場合と最悪場合を想定して、MDI の浮遊濃度を定量的に評価しながら行った。

結論:単量体MDI と PMDI (オリゴマー)の浮遊濃度は、Gorilla Glueを使用の標準の場合と最悪の場合で MDI (mg/m 3) の空気 1 立方メートル当たり 0.0005 ミリグラムで検出限界以下であった。

接着剤の使用量増加させ表面全体に接着の場合と接着表面全体が以前の状態の接着での (下地材と合板)の場合では浮遊MDI 濃度に影響はなかった。

研究資金謝辞: この研究はGorilla Glue社が資金を提供した。研究計画、実行、データ解析、公表について著者への実質的指示はなかった。

 

Lessons from Participatory Action Research in an Isocyanate Foam Facility

Andrew Comai1 and Judith Daltuva2

1 International Union, UAW, 8000 E. Jefferson, Detroit MI, 48214 Tel: 313-926-5563 acomai@uaw.net

2Research Area Specialist, Int., Environmental Health Sciences, University of Michigan School of Public Health, 1415

Washington Heights, M6234, Ann Arbor, MI 48109-2029, Tel: 734-936-0756. jdal@umich.edu

Corresponding Author: Andy Coamai, International Union, UAW, 8000 E. Jefferson, Detroit MI, 48214 Tel: 313-926-5563

Purpose: Isocyanate exposures were a primary concern for workers in a small automotive parts plant. This presentation will report on a Participatory Action Research (PAR) method used to uncover and address these worker concerns through Joint Health and Safety Committee activities. These activities include chemical substitution, engineering controls, training and personal protective equipment.

Background: The Study plant used TDI and MDI in the production of automotive foam parts. Approximately 250 hourly employees were involved direct production and 86 employees involved in engineering and management. A number of exposure issues were identified by union health and safety inspectors in 2001-2002. In 2003 the research team from the University of Michigan School of Public Health began a study using the Participatory Action Research (PAR) method.

Methods: Focus groups and plant wide Surveys were conducted in 2003, 2004, and 2005. These were directed by a Joint Labor Management committee. When the primary concerns for workers were identified actions plans were developed. U of M researchers observed meetings assisted in constructing surveys and compiled data. Action plans were tracked for three years. An Institutional Review Board oversaw the research project.

Findings: Issues related to isocyanates were the top health concern. In preliminary questionnaires respondents included air quality, ventilation, exposure to chemicals among the highest priorites. The qualitative comments were extremely helpful in motivating change. (e.g. “Nobody’s lungs are like they were, before they started working here.” “They have robbed us of good health”). Answers to survey questions were also analyzed across job task to look for trends. A respiratory symptom survey reported statistically significant differences in levels of health effects among the 10 different production lines. (Persistent Cough F=1.781,sig.058; Chest Tightness F=1.879,sig.043).

While ergonomic related soft tissue injuries were a primary concern reflected in the OSHA 300 log, surveys indicated an underlying and heretofore undetected level of respiratory illness. Exposure issues included inappropriate ventilation design at pouring stations and unloading stations. Skin exposures were identified during unloading and trimming operations involving partially cured product. Maintenance activity exposures included cleaning molds, heat gun use for cleaning pour nozzles,

filter changes, chemical storage and transfer of bulk materials. Industrial hygiene staff from the union assisted in hazard identification and local exhaust design recommendations to provide improved enclosures and point source local exhaust ventilation.

Funding Acknowledgement: The program was funded by National Institute for Environmental Health Sciences Grant No.5U45ES006180

 

イソシアネート フォーム施設における参加型アクション ・ リサーチからの教訓

目的:イソシアネートの曝露は、小さな自動車部品工場での作業者にとっての最大の関心事である。
このプレゼンテーションは、健康と安全委員会の活動とジョイントし、労働者の懸念に対処するための参加型アクション研究 (PAR)についての報告である。
これらの活動は、化学的解析、技術管理、訓練および個人保護装置を含む。

背景:この研究は、自動車用発泡体部品の生産で TDI、MDI を使用している場所である。およそ常時 250人の従業員が直接製造にかかわっており、86人はエンジニアリングとマネジメントに関与している。
曝露をこうむる幾人かは2001-2002 年労働組合の健康及び安全性の検査官によって特定された。
2003 年には、ミシガン大学公衆衛生大学院の研究チームは、参加型アクション研究 (PAR) 法を用いて調査を始めた。

方法: グループと設備調査は 2003年、2004 年と 2005 年に焦点を当て行った。これらは労使委員会によって指導された。
労働者の主な懸念事項が特定されたとき、行動計画が進展された。M U 研究者は調査を構成する会議を観察しデータをまとめた。行動計画は、3 年間追跡されました。

施設内倫理委員会はこの研究プロジェクトを監督した。

所見: イソシアネートに係る問題は、健康上の最大の懸念であった。予備アンケートの回答には、空気の質、換気、優先的化学物質への暴露が含まれている。
定性的コメントは動機を与える点で非常に良かった。(e.g. “Nobody’s lungs are like they were, before they started working here.” “They have robbed us of good health”).。

アンケートの質問への回答について傾向を見極める目的での分析も行った。
呼吸器症状調査では、10の異なる生産ラインの間で健康への影響レベルで統計的有意差を報告した。(持続性咳F=1.781,sig.058; 胸部のこだわりChest Tightness F=1.879,sig.043)

人間工学にかかわる軟部組織の病症は OSHA300 ログに反映される最重要事項であり、調査では、基本的にこれまで検出されないレベルの呼吸器疾患を示唆した。
曝露の問題には、注入と排出段階で不適切な換気設計が含まれていた。
肌の露出による暴露は、部分的に硬化された製品に関係する排出とトリミング操作を通して確認されまた。
曝露の保守作業には、注入ノズル、ノズル洗浄のためのヒートがんの使用、フィルターの変更、化学物質の貯蔵、バルク材料の移動が含まれる。

労働組合からの労働衛生スタッフは危険確認を支援し、排気場所の設計を推奨し局所排気装置源と包囲の改善を提唱した。

資金の謝辞: このプログラムは国立環境健康科学研究所の助成金No.5U45ES006180により実施した。

 

Biological Monitoring for Isocyanates in the UK

John Cocker & Kate Jones

Corresponding author: John Cocker, Head of Biological Monitoring, Health & Safety Laboratory, Harpur Hill, Buxton, SK17 9JS,

UK. john.cocker@hsl.gov.uk

Financial disclosure: Nothing to disclose

Introduction: Isocyanates are reactive chemicals and thousands of workers may be exposed to them during their manufacture and use.

 They are sensitisers and a major cause of occupational asthma in the UK. The UK Workplace exposure limit (WEL)1 or all isocyanates is 20 μg NCO/m3 for an 8h time weighted average (TWA) but this is not health-based and the onus on employers is to reduce exposure as low as reasonably practical.

The American Conference of Governmental Industrial Hygienists have recently proposed lowering the TLV (8h TWA) for toluene diisocyanate (TDI) to 7 μg/m3 (3.4 μg/m3 as NCO) and added a ‘skin’ notation to signify significant potential for dermal absorption. Reducing exposure reduces the risk but even at this level a risk of respiratory sensitisation may remain (ACGIH 2010)2. Reliance on respiratory protective equipment (RPE)

together with the ‘skin’ notation points to a need for biological monitoring (BM) to help assess exposure and the efficacy of control measures, including behaviour

Methods: The Health & Safety Laboratory uses biological monitoring for hexamethylene diisocyanate (HDI), toluene diisocyanate (TDI), isopherone diisocyanate (IPDI) and methylenediphenyl diisocyanate (MDI). The method is based on the analysis of hexamethylene diamine (HDA), toluene diamine (TDA), isopherone diamine (IPDA) and methylenediamine (MDA) released by hydrolysis of conjugates in urine samples collected at the end of exposure3.

In 2005 HSE proposed a biological monitoring guidance value (BMGV)4 of 1 μmol of isocyanate-derived diamines/mol of creatinine in end of exposure urine samples. The BMGV is based on the 90th percentile of data from over 1000 samples collected in studies of workplace exposure. The BMGV is not health based and exceeding it simply triggers an investigation of controls.

Since then BM has been used in a wide range of workplace studies looking at exposure to isocyanates in polyurethane manufacture5,6 and paint spraying。BM has found particular use as a simple exposure assessment technique for workers spraying isocyanates-based paints in motor vehicle repair7. The utility of BM to assess exposure was promulgated in the Health & Safety Executive led Safety and Health Awareness days (SHADs) around the UK. Data from samples collected after the SHADs and from repeat sampling of individuals shows lower levels of exposure suggesting behavior has changed. BM has now been adopted by the industry as an easy way to demonstrate control of exposure7

Conclusions: There is a substantial body of work demonstrating the utility of biological monitoring as a tool to assess exposure and the efficacy of controls including how they are used in practice. Non-health-based biological monitoring guidance values are a pragmatic approach to target when and where further action is required.

英国におけるイソシアンネートの生物学的モニタリング

イソシアネートは化学的に活性であり、何千もの労働者がそれらの製造や使用の際曝露されている可能性がある。それらは感作性であり英国の職業的喘息の主要源である。

英国の職場暴露限界(ウェル)1、あるいは全イソシアネートは8時間の加重平均(TWA)で 20 μ g/m (TWA)である。
しかし、これは健康基準ではない、雇用者の責任で理想的な低濃度の曝露に削減することだ。
米国産業衛生専門家会議は最近トルエンジイソシアネート (TDI)を 7 μ g/m 3 (3.4 μ g/m 3 NCO)に下げることを提案し、皮膚吸収の可能性の表記を追加した。
曝露を減らすことであるリスクが軽減されるが、このレベルでも呼吸器感作性のリスクが残る (ACGIH 2010) 2.

皮膚への注記とともに呼吸保護装置 (RPE)への信頼度は曝露評価と行動を含む有効な対策を立てるために生物学的モニタリング (BM) の必要性を指摘している。

方法:健康と安全研究室はヘキサメチレンジイソシアネート(HDI),トルエンジイソシアネート(TDI),イソフェロンジイソシアネート(IPDI),メチレンジフェニルジイソイアネー(MDI)に生物的モニタリングを用いた。

方法は、曝露3の終わりに集めた尿中での加水分解で生成するヘキサメチレンジアミン(HAD),トルエンジアミン(TDA),イソフェロンジアミン(IPDA)とメチレンジアミン(MDA)を分析のベースにした。

2005 年に、HSE は、生物学的監視指針値 (BMGV) 4 として尿サンプルのイソシアネート誘導体のクレアチニンのジアミン/mol 濃度 1 μmol を提案した。
BMGV は、職場での曝露の調査で収集された 1000以上のサンプルから 90 パーセンのデータに基づいている。BMGV は健康基準ではなく、規制のための調査の引き金になる。

それ以来BM はポリウレタン工場5、6 とペンキの噴霧現場でのイソシアンネート曝露調査に広い範囲で使用されている。
BMは、自動車再生工場7におけるイソシアネートベースの塗装作業者向けの簡単な曝露評価法として活用さられた。
曝露評価のBMの有効性は英国の健康と安全局およびSHADによって公布された。
SHADs 後収集されたサンプル、個々の繰り返しサンプルのデータは低いレベルの曝露を示した。
BM は今 exposure7 の制御を示す簡単な方法として業界で採用されている。

結論: 露出の評価と実際の規制の有効性を評価するツールとして生物学的モニタリングは有用である。
非健康ベースの生物学的モニタリングガイダンス値は、いつでも、どこでも求められる実用的な取り組みである。

 

Characterizing Exposures to Diisocyanates Used in Spray Polyurethane Foam Insulation (SPFI) and Other Polyurethane Products

Carol Hetfield

Corresponding author: Carol Hetfield, US Environmental Protection Agency

Financial disclosure: Nothing to disclose

The Environmental Protection Agency has worked closely with other federal partners to evaluate potential to “isocyanates” during installation of Spray Polyurethane Foam (SPF) insulation. SPF products, which contain isocyanates as key functional ingredients, are widely used in the weatherization of new and existing homes, schools and other buildings. In 2009, US federal representatives met with the Center for Polyurethanes Industry (CPI), the Spray Polyurethane Foam Alliance (SPFA), and individual chemical and product manufactures to outline our concerns and to establish a series of stewardship goals. These goals include the following:

1. Disseminate accurate and comprehensive hazard information.

2. Promote accurate product advertisement and marketing claims.

3. Develop and communicate best practices to adequately address exposures.

4. Advance dialogue on exposure assessment and data gaps, such as:

• Potential for dermal exposures to isocyanates on dust, particles, or other substrates

• Appropriate measurement methods

• The curing rate of isocyanates and factors that influence curing

• Recommendation on safe re-occupancy time for building occupants and post-occupancy ventilation needs.

This poster will focus on the fourth goal and will describe preliminary findings of discussions by federal staff representatives to identify assessment needs and data gaps associated with isocyanate-exposures to workers and consumers during use of SPF. This group identified four key exposure issues and six cross-cutting areas of interest. This poster will further describe the following:

Exposure Issues:

• Determining appropriate methods to assess exposures.

• Characterizing exposures to isocyanates in SPF products.

• Assessing variability of application and environmental factors on potential exposures.

• Identifying best practices to minimize exposures.

Preliminary Findings of Exposure Assessment Needs & Data Gaps:

1. The development and validation of standardized method(s) to measure the availability of reactive isocyanates groups in diverse media during application and re-occupancy periods.

 2. The development of occupational & consumer exposure monitoring studies, including the potential for exposures to other trade workers and building occupants who may remain on-site or return shortly after application.

Studies are also needed to better characterize exposures during the use of DIY consumer products and from product emissions over time.

3. Understanding of curing rates and safe re-entry time after a SPF product has been applied, considering how environmental factors, such as temperature and humidity, affect curing.

 4. Understanding the long-term stability of products installed in the home and whether there is the potential for exposure to substances that might form from thermal or product degradation during maintenance, renovation, deconstruction, and disposal activities, or fires.

5. Characterization of potential for dermal exposures to isocyanates. Is the potential for dermal exposures well characterized using typical industrial hygiene monitoring practices and what is the role of dermal exposures in the mechanistic pathways that result in isocyanate-induced asthma?

 6. Adequacy of current biomarkers & biomonitoring methods to accurately represent evidence of human exposure to isocyanates in workers and consumers.

スプレーポリウレタンフォーム(SPFI)に用いるジイソシアネートと他のポリウレタン製品の曝露特性

 

環境保護庁は発砲ポリウレタンホーム断熱材の設備を通してのイソシアネートの潜在的な有害曝露の評価について他の連邦機関と密接に研究している。
主要な機能成分としてイソシアネートを含むSPF製品は新規および既存の家、学校および他の建物に広く使用されている。

2009年、米連邦代表は我々の重要関心事項の説明と管理目標の制定のためにポリウレタン工業会 (CPI)、スプレー ウレタン発泡業界(SPFA) 個々の化学製品メーカーと会合した。

これらの目標は、

1. 正確かつ包括的な危害情報

2. 正確な製品広告やマーケティング

3. 暴露への的確で最良な対応手法の開発と情報交換

4. 暴露評価とデータ ギャップに関する協議対話の促進

;例えば

• ダスト、粒子、または他の基質の皮膚への暴露の可能性

• 適切な測定方法

• イソシアネートの硬化速度と硬化影響要因

• 建物に居住するための安全な再入居時間と居住後の必要な換気に関する勧告

この発表では、4つの目標に焦点を当て、アセスメントの必要性とSPFの使用中の労働者と消費者へのイソシアネートの曝露に関するデータギャップを確認するために
連邦政府スタッフの代表者による予備調査結果の討論について述べる。このグループは、4 つの曝露の課題と以下の6つの横断的分野を確認した。

曝露問題

・曝露評価する適切な方法を決定

• SPF 製造におけるイソシアネートの暴露評価

•潜在的な曝露における適用と環境要因評価の変動

• 最小曝露に対する最良の手法確認

曝露評価の予備調査結果とデータギャップ

1、中間時と再入居期間のイソシアネート類の活性能の測定のための標準手法の検証と開発

2.塗布後室内にすぐ戻るか、残る可能性のある作業者や建設作業者に対する曝露を含む職業者と消費者曝露モニタリング研究の進展。

適用後すぐ戻るか室内に残る可能性のある作業者と建設作業者に対する曝露の潜在を含む職業上の開発と消費者曝露モニタリング調査。

調査はDIY 消費者製品の使用と徐々に排出生成物からの曝露を特徴付けるためにも必要。

3.SPF製造後の硬化速度と安全な再入場時の理解、硬化後の温度や湿度などの環境因子をいかに考慮するか。

4. 自宅内の製品の長期的な安定性の理解や、保守、改修、解体、処分の活動や火災時に熱や製品の劣化から生成するかもしれない物質の曝露の可能性があるかどうか

5. イソシアネートの皮膚暴露の可能性の評価。皮膚曝露の可能性は典型的な産業衛生監視手段で特徴づけられるか、そしてイソシアネート誘発喘息を引き起こすメカニズムにおいて皮膚曝露の役割は何か?

6.消費者と作業者のイソシアネートの人的曝露の正確な証拠を示すための最新の生体指標とバイオモニタリングの妥当性

 

US EPA Chemical Information Gathering, Exposure Assessment Gaps, & Risk Management 

Katherine Sleasman

Corresponding author: Katherine Sleasman, Environmental Protection Specialist, Environmental Protection Agency,

Washington, DC, US. sleasman.katherine@epa.gov

Financial disclosure: Nothing to disclose

In 2011, EPA released Chemical Action Plans on methylene diphenyl diisocyanate (MDI), toluene diisocyanate (TDI), and related diisocyanate compounds based on concerns for potential exposures to consumers and others using products containing these chemicals。 These plans list regulatory and risk management actions for diisocyanates that the Agency will consider under the authorities of the Toxic Substance Control Act (TSCA).

Under TSCA, EPA has authority to collect from manufacturers and importers records of allegations of significant adverse reactions [section 8(c)] and unpublished health and safety data [section 8(d)]. EPA also has authority to issue information request letters and subpoenas to companies to provide the Agency with necessary data to carry out TSCA (section 11) EPA expects that collecting additional data will aid in better understanding exposure scenarios and filling in information gaps crucial to exposure assessment, and also identifying areas requiring future research.

In accordance with TSCA section 8(e), which requires chemical manufacturers and importers to notify EPA that they have obtained information on any substance or mixture that reasonably supports the conclusion that such substance or mixture presents a substantial risk of injury to health or the environment, EPA has received numerous 8(e) notices from industry for isocyanate compounds.

EPA is also considering sending out information requests to manufacturers and processors of polyurethane products that are applied on-site in a home that react and undergo curing.

The Agency’s interest is in studies or reports related to curing for diisocyanates and the factors that influence curing, such as temperature, humidity, surface application type.

This type of information will better inform the Agency of appropriate re-occupancy time for consumers, residents, self-employed workers, and other building occupants. EPA is also considering initiating section 4 rulemaking to require exposure monitoring studies on uncured diisocyanates in consumer products and exposure monitoring studies in representative locations where commercial products with uncured diisocyanates would be used or present as product emissions.

The methods work that will be described at this conference is important in issuing any test rule. Information collected under TSCA aids the Agency in better understanding complex exposure scenarios that may affect consumers, bystanders, and self-employed workers.  This information may also inform the Agency of the potential uses of polyurethane products by consumers and workers that EPA is not yet aware.

Information on potential exposure scenarios and uses aid the Agency in conducting robust exposure assessments, and to pursue further research necessary to perform a more targeted analysis to assess risks associated with these chemicals. By collecting this type of information and making it publicly available, EPA hopes to promote comprehensive hazard communication, to fill or identify additional data gaps, and to promote research focused on the consumer, self-employed worker, and bystander to better understand exposure and risk.

This poster will describe EPA’s processes and authorities to identify data needs and to collect data, and practices in managing health and environmental risks.

 

米国EPA化学情報収集,暴露アセスメントギャップとリスク管理

2011年EPAはメチレンジフェニルジイソシアネート(MDI),トルエンジイソシアネート(TDI)及び関連するジイソシアネート化合物およびこれらの化学物質を含む製品を使用する
消費者等の潜在的暴露に関する化学アクションプランを公表した。
これらの計画はジイソシアネートの規制とリスク管理を掲載し、情報局が有害物規制法ACT(TSAC)当局の下で検討するであろう。
Tscaのもと ,EPA は、重大な副作用 [セクション 8(c)] の疑いのある記録、未発表の保健及び安全性データ [セクション 8(d)] を製造者、輸入業者から収集する権限を持つ。

EPA はまた投書の要求に対し情報提供し企業を召喚し TSCA (セクション 11) 遂行必要なデータを準備し、企業を召喚する権限を持つ。

EPA は、収集する追加のデータが曝露シナリオをより理解し、暴露評価に不可欠な情報のギャップを埋める助けとなり、今後求められる研究分野を確定することに期待する。

TSCAセクション8(e)に従って、化学企業や輸入業者にEPAへの報告を義務づけ、健康や環境への被害の潜在的リスクの存在の情報を得る。
EPAは業界からイソシアネート化合物に関する多くの通知を得る。

EPA はメーカーや室内で反応、硬化するポリウレタン製品を扱う加工業者に情報要求の送信をも考慮している。

EPAの関心事は、硬化に対する温度、湿度、表面材のタイプなどの影響因子とイソシアネート硬化に関する研究と情報である。
この種の情報は消費者、住民、自営業の労働者および他の建物の居住者の適切な入居時にとって良い情報となる。
EPAはまたセクション4で消費材の未硬化の必要な暴露モニタリングおよび未硬化ジイソシネートとの使用あるいは排出するような化学工場の代表的な場所でのモニタリング調査のルール作りを始める。
この会議で述べた手方は何らかの試験的なルールを提供するうえで重要である。
TSCA の下で収集された情報は、消費者、第三者、自営業の労働者に影響を与える複雑なばく露のシナリオを理解するうえでの情報局を助ける。
この情報はEPAがまだ入手していない消費者や労働者によるポリウレタン製品の潜在的用途を情報局に知らせる。
潜在的な暴露シナリオと活用は強力な暴露評価を行ううえで情報局をたすけ、ついてはこれらの化学物質に関するリスク評価に的を絞ったさらなる研究を助ける。
このポスターでは、EPA はデータニーズの確認と収集データ収集のためのプロセスと権限について、そして健康および環境リスク管理の実践について述べる。






国際会議報告目次へ戻る→